合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力儀和界面張力儀并不一樣
> 秦漢時期的物理學(xué)研究成果
> 4種不同組分的混合溴化鹽表面張力σ-t經(jīng)驗(yàn)公式系數(shù)與相關(guān)性研究(三)
> 硅丙乳液質(zhì)量分?jǐn)?shù)與粘度、表面張力的關(guān)系及在模擬病害壁畫修復(fù)中的應(yīng)用(二)
> 溫度和碳碳雙鍵數(shù)對脂肪酸酯表面張力的影響(一)
> 應(yīng)用單分子層技術(shù)分析磷脂酶與不同磷脂底物特異水解性能:結(jié)果和討論、結(jié)論!
> 不同種類與濃度的無機(jī)鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 液滴撞擊固體表面過程中黏度與表面張力系數(shù)變化(三)
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(下)
> 表面張力儀的行業(yè)應(yīng)用13條
推薦新聞Info
-
> 微通道流動沸騰中表面張力的關(guān)鍵作用機(jī)制研究(三)
> 微通道流動沸騰中表面張力的關(guān)鍵作用機(jī)制研究(二)
> 微通道流動沸騰中表面張力的關(guān)鍵作用機(jī)制研究(一)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(三)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(二)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(一)
> 破解固態(tài)電池界面之困:表面張力調(diào)控SiO?氣凝膠電解質(zhì)原位構(gòu)筑新策略
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機(jī)制(三)
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機(jī)制(二)
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機(jī)制(一)
不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
來源:西安交通大學(xué)學(xué)報 瀏覽 975 次 發(fā)布時間:2025-05-08
1.3實(shí)驗(yàn)系統(tǒng)
本文采用的表面光散射實(shí)驗(yàn)系統(tǒng)由實(shí)驗(yàn)光路、耐高壓實(shí)驗(yàn)本體、控溫系統(tǒng)和數(shù)據(jù)采集與處理系統(tǒng)組成,圖1為實(shí)驗(yàn)系統(tǒng)示意圖,詳細(xì)參見文獻(xiàn)。
圖1表面光散射實(shí)驗(yàn)系統(tǒng)示意圖
激光器采用低功率連續(xù)型固體激光器,λ0=532 nm。高精度旋轉(zhuǎn)臺的直徑為80 mm、角度分辨率為0.000 67°,經(jīng)過校正角度測量的精度可以達(dá)到±0.05%,數(shù)字相關(guān)器為ALV-LinCorr,可以計(jì)算兩路信號的相關(guān)函數(shù)。實(shí)驗(yàn)本體采用304號不銹鋼材料,內(nèi)部直徑為70 mm、容積為150 cm3,實(shí)驗(yàn)中所需的樣品體積約為50 cm3。實(shí)驗(yàn)本體可控制在溫度為250~400 K、壓力為0~10 MPa的范圍。實(shí)驗(yàn)本體溫度控制采用電加熱方式,采用Fluke2100溫控器控溫,采用經(jīng)過標(biāo)定的Pt100鉑電阻溫度計(jì)和ASL的F200高精度測溫儀測溫,溫度測量的不確定度小于±30 mK。
為了檢驗(yàn)系統(tǒng)的可靠性,利用標(biāo)準(zhǔn)物質(zhì)甲苯對裝置進(jìn)行了檢驗(yàn),結(jié)果表明表面張力和黏度的實(shí)驗(yàn)值與理論值最大偏差為1.3%和0.39%,可以滿足表面張力和黏度的高精度測試要求。
1.4氣相參數(shù)估算
由式(1)可以求解表面波色散方程需要的ρ′和η′,本文中HFE7000和HFE7200在飽和狀態(tài)下的氣相密度由PR方程結(jié)合飽和蒸氣壓方程進(jìn)行估算,估算的預(yù)期不確定度為1%。
2實(shí)驗(yàn)結(jié)果及分析
本文對HFE7000和HFE7200在飽和狀態(tài)下293.17~393.00 K和293.27~393.35 K溫度區(qū)間的表面張力和黏度進(jìn)行了實(shí)驗(yàn)研究,結(jié)果列于表2。
表面張力采用與溫度相關(guān)的van der Waals關(guān)聯(lián)式進(jìn)行擬合
式中:σ0和n是擬合參數(shù)。
黏度采用多項(xiàng)式擬合
表3列出了擬合得到的參數(shù)值。HFE7000、HFE7200表面張力實(shí)驗(yàn)值與擬合方程(9)的計(jì)算值的最大偏差分別為0.064 mN·m-1和0.068 mN·m-1,平均偏差分別為0.030 mN·m-1和0.024 mN·m-1。黏度實(shí)驗(yàn)值與擬合方程(10)的計(jì)算值的平均相對偏差分別為0.71%和0.36%,最大相對偏差分別為1.83%和0.63%。
圖2給出了HFE7000和HFE7200表面張力與溫度的關(guān)系以及實(shí)驗(yàn)值與擬合方程計(jì)算值的偏差。兩種氫氟醚的表面張力隨著溫度升高逐漸降低,且隨著相對分子質(zhì)量增大和臨界溫度升高,表面張力增大。在整個測量的溫度范圍內(nèi),實(shí)驗(yàn)值與方程計(jì)算值的偏差不超過±0.1 mN·m-1。
圖2 HFE7000、HFE7200表面張力與溫度的關(guān)系以及實(shí)驗(yàn)值與方程計(jì)算值的偏差
表3 HFE7000和HFE7200表面張力和黏度擬合參數(shù)
圖3給出了HFE7000、HFE7200黏度與溫度的關(guān)系以及實(shí)驗(yàn)值與擬合方程計(jì)算值的偏差,結(jié)果表明,實(shí)驗(yàn)值與方程計(jì)算值的偏差均在±2%之內(nèi)。
根據(jù)誤差傳遞理論,本文實(shí)驗(yàn)測量的不確定度可由色散方程(1)中的各測量和輸入?yún)?shù)的不確定度引入,但由于式(1)沒有理論分析解,只能近似估算表面張力和黏度測量的不確定度。本文采用參考文獻(xiàn)中推薦的方法,表面張力和黏度的測量不確定度近似表達(dá)式為
圖3 HFE7000、HFE7200黏度與溫度的關(guān)系以及實(shí)驗(yàn)值與方程計(jì)算值的偏差
表4給出了式(11)、(12)中各參數(shù)對HFE7000和HFE7200表面張力和黏度在溫度上下限(T=293~393 K)的擴(kuò)展測量不確定度的貢獻(xiàn)。其中,兩種物質(zhì)在T=293 K時,表面張力擴(kuò)展測量不確定度為0.33%,黏度擴(kuò)展測量不確定度分別為1.04%和1.03%;當(dāng)T=393 K時,表面張力擴(kuò)展測量不確定度為0.33%,黏度擴(kuò)展測量不確定度分別為1.35%和1.13%;表面張力的不確定度保持不變,隨著溫度的升高,黏度測量的擴(kuò)展測量不確定度升高。越接近臨界溫度,氣相密度和黏度對擴(kuò)展測量不確定度的貢獻(xiàn)越大。因此,本文HFE7000和HFE7200表面張力的擴(kuò)展測量不確定度(置信因子k=2)估計(jì)為0.35%,黏度的擴(kuò)展測量不確定度(k=2)分別估計(jì)為1.35%和1.13%。
表4各參數(shù)對HFE7000和HFE7200表面張力和黏度測量不確定度的貢獻(xiàn)%
3結(jié)論
本文利用新搭建的表面光散射實(shí)驗(yàn)系統(tǒng)測量了兩種氫氟醚類物質(zhì)HFE7000和HFE7200在飽和狀態(tài)下的表面張力和黏度,溫度范圍均為293~393 K。利用獲得的數(shù)據(jù),擬合了表面張力和黏度的關(guān)聯(lián)式。HFE7000和HFE7200表面張力實(shí)驗(yàn)值與關(guān)聯(lián)式計(jì)算值的平均偏差分別為0.030 mN·m-1和0.024 mN·m-1;HFE7000和HFE7200黏度實(shí)驗(yàn)值與關(guān)聯(lián)式計(jì)算值的平均相對偏差分別為0.71%和0.36%。





