合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構(gòu)象研究(二)
> 烷基糖苷檸檬酸單酯二鈉鹽水溶液的動態(tài)表面張力測定及影響因素(下)
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(三)
> 雙締合型穩(wěn)泡劑及其制備方法和應(yīng)用
> 篩選常用、經(jīng)濟且可抑制低階煤煤塵的表面活性劑(二)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(一)
> 納米乳液的類型、制備、粒徑分布、界/表面張力、接觸角和Zeta電位
> Ce含量對Mg-1.2Ca鎂合金阻燃性能及表面張力的影響研究(二)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(二)
> 溫度和鹽離子對表面活性劑溶液與原油之間界面張力的影響規(guī)律研究
推薦新聞Info
-
> 微通道流動沸騰中表面張力的關(guān)鍵作用機制研究(三)
> 微通道流動沸騰中表面張力的關(guān)鍵作用機制研究(二)
> 微通道流動沸騰中表面張力的關(guān)鍵作用機制研究(一)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(三)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(二)
> 電場電壓對明膠液滴荷質(zhì)比、表面張力的影響及預(yù)測模型構(gòu)建(一)
> 破解固態(tài)電池界面之困:表面張力調(diào)控SiO?氣凝膠電解質(zhì)原位構(gòu)筑新策略
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機制(三)
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機制(二)
> 聯(lián)結(jié)基對磺酸鹽型雙子表面活性劑界面行為及泡沫穩(wěn)定性的作用機制(一)
基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴張流變性質(zhì)(二)
來源: 《天津工業(yè)大學(xué)學(xué)報》 瀏覽 966 次 發(fā)布時間:2024-12-09
2結(jié)果與討論
2.1吸附膜的界面擴張彈性
彈性是表征界面吸附膜強度的最直觀的數(shù)據(jù)。界面上吸附分子間存在相互作用,當(dāng)外力作用在界面膜上時,界面膜產(chǎn)生形變,吸附分子間的距離發(fā)生變化,分子間相互作用力隨之改變,界面膜彈性定量地描述了形變條件下的相互作用力變化程度。
2.1.1表面和界面擴張彈性的全頻率譜
本文對界面膜施加擴張/壓縮形變,監(jiān)測了界面張力躍遷后的衰減特性,計算得到界面膜的彈性。C8C10溶液的表面和界面擴張彈性的全頻率譜如圖2所示。
圖2 C8C10溶液的表面和界面擴張彈性的全頻率譜
由圖2可以看出,在實驗濃度范圍內(nèi),擴張彈性均隨頻率升高逐漸增大,直到達(dá)到平臺值。這是由于對于吸附膜而言,有兩種方式對抗外界施加的形變:①改變分子間距;②通過擴散-交換過程,改變界面吸附分子數(shù)量。若界面膜通過改變界面吸附數(shù)量的方式對抗形變,外界做的功就被耗散在環(huán)境中,界面膜不儲存能量,彈性較低。極端條件下,外界施加的形變足夠緩慢,擴散-交換過程在形變過程中充分發(fā)生,則形變后的界面組成與形變前相同,彈性為零;而如果形變足夠快,界面與體相間不存在分子交換,外界做功全部轉(zhuǎn)化為膜的彈性,此時的擴張彈性稱之為極限擴張彈性ε0,其定義式為:
由式(5)可以看出,ε0定量表征界面分子數(shù)量(Γ)發(fā)生變化時相互作用力的變化程度,對于給定體系為常數(shù)。界面膜的擴張彈性數(shù)值一旦達(dá)到ε0,繼續(xù)增大頻率,則彈性不再增大。因此,對于任何吸附膜,其擴張彈性的全頻率譜均為從零增大到ε0的曲線,曲線的特征通過彈性開始升高的頻率ω1、ε0的數(shù)值和達(dá)到ε0的頻率ω0描述,如圖2(a)所示。
2.1.2濃度對ω1的影響
表面活性劑濃度對表面和界面擴張彈性全頻率譜上ω1的影響如圖3所示。
圖3表面活性劑濃度對表面和界面擴張彈性曲線上ω1的影響
擴張彈性數(shù)值開始上升,意味著擾動前后界面膜的組成開始變化,擴散-交換過程不能完全消除形變的影響。因此,ω1反映了界面分子與體相間交換的難易程度:ω1值越低,則擴散-交換過程越慢,界面與體相間的分子交換越困難。
由圖3可以得出如下幾點結(jié)論:
(1)對于C8C10和C10C8,無論是表面還是界面,ω1均隨濃度增大而升高。這是由于隨表面活性劑濃度升高,擴散-交換過程加快造成的。
(2)羥基取代烷基苯磺酸鹽在界面上的吸附有其獨特性,由于苯環(huán)上磺酸基和羥基的“定位”作用,使得羥基鄰位的長鏈烷基傾向于沿界面伸展,而羥基對位的長鏈烷基則傾向于伸入空氣或油相。因此,界面分子中羥基鄰位的烷基之間表現(xiàn)出較強的相互作用。C8C10和C10C8是一對同分異構(gòu)體,C10C8分子中羥基鄰位的烷基更長。當(dāng)C10C8分子吸附到表面上時,分子間的相互作用更強,擴散-交換過程更慢,因此,C10C8的ω1在整個實驗濃度范圍內(nèi)均低于C8C10。
(3)當(dāng)表面活性劑分子吸附到癸烷-水界面上時,癸烷分子插入界面吸附膜中,破壞了分子間相互作用;同時,C8C10分子中伸向油相的烷基鏈更長,與油分子的相互作用更強,其擴散-交換過程變得比C10C8更慢,因此,對于界面吸附膜,C10C8的ω1在整個實驗濃度范圍內(nèi)均高于C8C10,表現(xiàn)出與表面完全不同的趨勢。
(4)還需指出的是,對于C8C10,其界面上的ω1明顯低于表面,也充分說明羥基對位的長鏈烷基與油分子間存在較強的相互作用。





